
Strict Locality in Syntax
Keywords: computational complexity, strictly local languages, selection, functional hierarchy, adjunct order

1. Overview Onemajor goal of linguistic theory is to account for restrictions on the locality of linguis-
tic dependencies: overwhat distancemay they hold, and underwhat conditions? Computational com-
plexity provides a natural and insightful way to describe such restrictions. Recent work has accumu-
lated substantial evidence that all linguistic patterns fall within very simple classes of formal languages,
known as subregular languages. These are string languages in the case of phonology andmorphology,
but tree languages for syntax (Graf and Heinz 2015; Graf 2018). Among the subregular classes impli-
cated for natural language is the class of strictly local (SL) languages, which have been used to model
local phonotactics (e.g. syllable structure) as well as category selection in syntax.

However, the pervasiveness of SL in syntax has not been fully appreciated: in addition to selection,
functional hierarchies are SL, as is adjunct ordering, and perhaps also certain kinds of last resort oper-
ations. All of these can be understood as instantiations of a single structure building operation. Within
syntax, this operation plausibly corresponds to Chomsky’s (1995) Merge, but the present perspective
suggests a broader conclusion: SL computations are the basis for all linguistic structure. This in turn
has significant implications for language cognition.

2. Introduction to SL An SL-𝑘 string language is characterized by the following property: a string
is ruled out if it contains any banned substrings of length 𝑘 , equivalently it is ruled in if every such
substring is licit. For illustration, consider a (simplified) model for Japanese phonotactics: the syllable
template is (C)–(j)–V–(N), where ‘C’ stands for a consonant, ‘V’ for a vowel, ‘j’ for a palatal glide, and
‘N’ for a nasal coda. This pattern is SL-2. A positive grammar, which lists all licit substrings, is given
on the left side of Figure 1 below. We can visualize this grammar using its finite state automaton (FSA)
representation, shownon the right. Every path through theFSAwhich ends in afinal state (markedwith
double circles) represents a string in the language. While the full class of languages implemented by
FSAs (the regular languages) ismuch larger than SL, all shownhere arewithin SL. For an SL-2 grammar,
each state is namedwith a single symbol, and its outgoing transitionswith the symbols thatmay follow.

Grammar:

$C, $j, $V, Cj, CV,
jV, VC, Vj, VN, V$,
NC, Nj, NV,N$


Example word: sjunkan ‘moment’
Substrings: $s sj ju un nk ka an n$

start C j V NC
j

j
V

V N

j
C

V

Figure 1: Japanese phonotactics is SL-2. Left: positive SL-2 grammar and example word, with attested
substrings highlighted. $ marks the beginning/end of a word. Right: FSA representation of grammar.

PRES ⟨T− lv+⟩

v ⟨lv− D+ V+⟩

the ⟨D− N+⟩

cat ⟨N−⟩

chased ⟨V− D+⟩

the ⟨D− N+⟩

rat ⟨N−⟩

Figure 2: MG dependency tree
for “The cat chased the rat.”

3. SL in syntax, selection To show that selection, functional hierar-
chies, and adjunct ordering are all SL, I make use of Minimalist Gram-
mar (MG) dependency trees. MGs (Stabler 1997) are a formalization
of ideas from Chomsky’s (1995) Minimalist Program. Following recent
precedent (cf. Graf 2022; Graf and Shafiei 2019), I utilize dependency
trees since they are compact while containing all necessary information
about the derivation. As an example, the dependency tree for the sen-
tence “The cat chased the rat” is shown in Figure 2. The rightmost child
of each node is its complement; others are specifiers. Positive features
are “selector” features and negative features are “category” features. For
example, the feature specification for the v head is ⟨lv− D+ V+⟩, encoding the fact that v takes a DP
specifier and a VP complement. I omit all movement features since they are not relevant here.

1

Now, consider the path from the root to the rightmost leaf which includes all nodes which domi-
nate or c-command the leaf—call this the spine of the tree (cf. Graf and De Santo 2019). The spine for
our example is PRES · v · the · chased · the · rat. This string forms the basis for the SL computation of
syntactic dependencies (note that each left branch begins a new spine). For example, the FSA in Figure
3a implements an SL-3 string language which handles selection for a fragment of English.

+lv +D +V +V +D +N

+P

End

lv−V+

lv−D+V+ D−

D−N+

V−

V−D+

V−P+ P−
P−D+

D−

D−N+ N−

N−P+

(a) FSA for lexical selection in English.

C T Perf Prog Pass lv
T Perf

Prog
Pass

lv

Prog

Pass
lv

Pass

lv

lv

(b) FSA for English clausal hierarchy.

N+ N/Adj1 N/Adj2 N/Adj3 N/Adj4
N Adj2 Adj3 Adj4

Adj3
Adj4

Adj4

Adj1 Adj2 Adj3 Adj4

(c) FSA schematic for adjunct ordering.

Figure 3: FSAs for three SL syntactic patterns.

4. Functional hierarchies Functional hi-
erarchies are theoretically problematic due
to their properties of strict ordering and op-
tionality. Ifmodeled as feature-driven selec-
tion, eachheadmust allowavariety of selec-
tional frames which conspire to enforce the
correct order. But mathematically, a func-
tional hierarchy is just a preorder (cf. Larson
2021), which is in turn an SL-2 pattern: hav-
ing seen one node, we know which nodes
may follow. In this case it is natural to label
the states and transitions with just the cat-
egory of the node. Such an FSA for the En-
glish clausal hierarchy is shown inFigure 3b.
We could also label the transitions with MG
feature lists, recapitulating the “multiple se-
lectional frames” analysis, but the shape of
the machine is identical. Furthermore, the
structure of this pattern—a series of slots
in fixed order, some of which are optionally
empty—is parallel to syllable structure.

5. Adjunct ordering Adjunct ordering, e.g.
the fact that big blue house is more natural
than blue big house, has a similar structure
to a functional hierarchy. The difference is that the FSA also contains loops, allowing structures like
big big big blue house. For concreteness, I treat adjuncts as dependents of their head. A schematic FSA
is shown in Figure 3c. The same structure arises if adjuncts are instead analyzed as being introduced
by functional heads, as in cartographic approaches (cf. Cinque 1999). Thus, the claim that adjunct
ordering is SL is robust against variation in analytical choices.

6. Implications Because SL is among the very weakest subregular classes, this means that the most
fundamental aspects of linguistic structure building are also among the simplest and most local. Fur-
thermore, non-local dependencies such as consonant harmony (Heinz 2018) and syntactic movement
(Graf 2022) are also subregular. Within syntax at least, these appear to be tier-based strictly local, or TSL,
a generalization of SL in which certain elements are ignored. Thus, both local and non-local depen-
dencies arise fromvery similar, simple computations. These findings help to explainwhy suchpatterns
exist, and also suggest how such patterns may be learned (cf. Lambert et al. 2021).
References Cinque, Guglielmo (1999). Adverbs and functional heads: A cross-linguistic perspective. Oxford University
Press. · Chomsky, Noam (1995). The Minimalist Program. MIT Press. · Graf, Thomas (2022). “Typological Implications of
Tier-Based Strictly Local Movement”. SCiL 2022. · Graf, Thomas and Aniello De Santo (2019). “Sensing Tree Automata as a
Model of Syntactic Dependencies”. MOL 16. · Graf, Thomas and Jeffrey Heinz (2015). Commonality in Disparity: The Com-
putational View of Syntax and Phonology. GLOW 2015. · Heinz, Jeffrey (2018). “The computational nature of phonological
generalizations”. Phonological Typology, Phonetics and Phonology. · Larson, Richard K. (2021). “Rethinking cartography.”
Language 97. · Stabler, EdwardP. (1997). “Derivationalminimalism”. Logical Aspects of Computational Linguistics. Springer.

2

